Abstract We consider the nonparametric analysis of length-biased and right-censored data (LBRC) by quantile difference. With its desirable properties such as superior robustness and easy interpretation, quantile difference has been… Click to show full abstract
Abstract We consider the nonparametric analysis of length-biased and right-censored data (LBRC) by quantile difference. With its desirable properties such as superior robustness and easy interpretation, quantile difference has been widely used in practice, in particular, for missing and survival data. Existing approaches for nonparametric estimation of quantile difference in length-biased survival data, however, exhibit some drawbacks such as non-smoothness and instabilities. To overcome these difficulties, we proposed a smoothed quantile difference estimation approach to improve its estimating efficiency with its validity justified by asymptotic theories. Simulations are also conducted to evaluate the performance of the proposed estimator. An application to the Channing house data is further provided for illustration.
               
Click one of the above tabs to view related content.