LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of punch geometry (head-flat diameter) and tooling type (‘B’ or ‘D’) on the physical–mechanical properties of formulation tablets

Photo by kellysikkema from unsplash

Abstract The presented study assessed the influence of punch geometry (head-flat [HF] diameter) and tooling type (‘B’ or ‘D’) on the physical–mechanical properties of tablets prepared by direct-compression of two… Click to show full abstract

Abstract The presented study assessed the influence of punch geometry (head-flat [HF] diameter) and tooling type (‘B’ or ‘D’) on the physical–mechanical properties of tablets prepared by direct-compression of two guaifenesin (25% or 40% w/w) formulations. Tablets of both formulations were prepared on instrumented, single-layer, rotary tablet press using 10 mm, flat-faced, ‘B’ or ‘D’-type tooling with different HF diameters, and compression forces (CF) ranging from 5 to 25 kN with 5 kN increments. The tablets were evaluated for dimensions, weight variation, tensile strength (TS), friability, and capping index. In general, tablets prepared using ‘D’ tooling showed a significantly (p < 0.05) higher TS compared to those prepared using ‘B’ tooling, likely due to higher dwell-times associated with ‘D’ tooling. Formulations containing 25% w/w guaifenesin showed a significantly (p < 0.05) higher TS compared to those containing 40% w/w guaifenesin, at given compression CF, punch geometry, or tooling type. This could be due to the higher ratio of Prosolv® SMCC contributing to the compressibility. For both formulations compressed using ‘B’ tooling, differences in TS profiles were observed between different HF tooling. The TS of these tablets increased significantly with increasing HF diameter. For formulations compressed using ‘D’ tooling, this trend was observed only up to a CF of 15 kN, beyond which the TS plateaued, possibly due to work-hardening of the formulation at higher CF. These formulations also exhibited capping at CF above 15 kN and with higher HF diameters. The study showed a significant influence of punch geometry and tooling type on the physical properties of tablets.

Keywords: type physical; geometry; tooling type; influence punch; punch geometry; diameter

Journal Title: Drug Development and Industrial Pharmacy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.