LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential biomedical reuse of vegetative residuals from mycorrhized grapevines subjected to warming

Photo from wikipedia

ABSTRACT Grapevine leaves are widely discarded in open fields despite their known antioxidant properties. We tested the cytotoxicity of leaf extracts from three clones (CL-260, CL-1048, CL-8) of Vitis vinifera… Click to show full abstract

ABSTRACT Grapevine leaves are widely discarded in open fields despite their known antioxidant properties. We tested the cytotoxicity of leaf extracts from three clones (CL-260, CL-1048, CL-8) of Vitis vinifera L. cv. Tempranillo against four human cancer cell lines: colon, HT-29; breast, MCF-7; lung HTB-54; and lymphoblastic leukemia, CCRF-CEM. Grapevines were cultivated at either ambient (24/14 °C) or elevated (28/18 °C) day/night temperatures, and inoculated (+M) or not (-M) with arbuscular mycorrhizal fungi (AMF). Cytotoxicity was analysed by MTT assays. Elevated air temperatures enhanced the cytotoxicity of leaf extracts from CL-260 against HT-29, CCRF-CEM and HTB-54 and that from CL-8 against MCF-7. Mycorrhization improved the cytotoxicity of leaf extracts from CL-1048 against HT-29, CCRF-CEM, HTB-54 and MCF-7. The cytotoxic activities of CL-260 against HTB-54 and CL-1048 against HT-29 were correlated, respectively, with total phenols and total antioxidant capacity. We conclude that the predicted increase in air temperature for the future climate and the mycorrhizal association of grapevines may enhance the cytotoxicity of leaves, which strengthens the potential application of these agricultural residuals for biomedicine. However, the clonal diversity in the response to AMF and air temperature highlights the importance of choosing the most adequate clone for a concrete environmental scenario.

Keywords: potential biomedical; htb; ccrf cem; cytotoxicity leaf; leaf extracts; cytotoxicity

Journal Title: Archives of Agronomy and Soil Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.