LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of organic wastes on labile organic carbon in semiarid soil under plastic mulched drip irrigation

Photo from wikipedia

ABSTRACT The objective of this work was to evaluate the variation in labile organic carbon fractions after the application of organic wastes (OWs) in semiarid soil under plastic mulched drip… Click to show full abstract

ABSTRACT The objective of this work was to evaluate the variation in labile organic carbon fractions after the application of organic wastes (OWs) in semiarid soil under plastic mulched drip irrigation. The two-year experiment involved six treatments: chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), and tree leaves (TL), with an unamended soil (no OWs) as control. In 2015 and 2016, treatment with OWs led to increased levels of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, easily oxidized organic carbon, as well as higher carbon management indexes and yields and lower oxidation stability coefficients. Higher SOC contents (p <0.01) were achieved in both years for TL and MS compared to the other OWs. In particular, the SOC content in 2016 was higher (p <0.05) for TL than MS. Compared to the other OWs, the easily oxidized organic carbon levels and carbon management indexes in both years were higher (p <0.01) for CM, SM, and MS, whereas the oxidation stability coefficients were lower (p <0.01). In conclusion, among the studied treatments, the application of MS was the most effective for improving soil fertility and enhancing soil carbon sequestration.

Keywords: semiarid soil; organic wastes; carbon; labile organic; organic carbon

Journal Title: Archives of Agronomy and Soil Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.