LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapeseed (Brassica napus L.) biofortification with selenium: How do sulphate and phosphate influence the efficiency of selenate application into soil?

Photo from wikipedia

ABSTRACT The connection between sulphur (S) and selenium (Se) metabolism makes rapeseed (Brassica napus) an attractive candidate for Se fortification. Unfortunately, fertilizers may interfere with the availability of selenate (SeO42-)… Click to show full abstract

ABSTRACT The connection between sulphur (S) and selenium (Se) metabolism makes rapeseed (Brassica napus) an attractive candidate for Se fortification. Unfortunately, fertilizers may interfere with the availability of selenate (SeO42-) in numerous ways, including both soil and physiological processes. Experiments on two agricultural soils amended with SeO42- (32 μg Se kg−1 soil), sulphate and phosphate (each at three levels of supply) were established to elucidate the effect of these anions on the selenization efficiency. Maximal efficiency in Chernozem soil was roughly two-fold higher (455 μg Se kg−1 seed) than in Cambisol. Sulphate significantly decreased (up to 28%) the seed Se contents in Cambisol, while an enhancement (up to 33%) was found in Chernozem. In the Chernozem, the induction of collective S and Se translocation toward the seed more than compensated for any competition effects due to the highest sulphate supply. In Cambisol, plant Se distribution did not follow that of S as closely as in Chernozem. Phosphate did not significantly alter the fortification efficiency. Resistance of rapeseed proteins to protease hampered a quantitative investigation of changes in Se speciation under different S supplies. Nevertheless, protein-bound selenomethionine was the predominant Se storage form and traces of other Se species were also identified.

Keywords: seed; brassica napus; rapeseed brassica; soil; efficiency; phosphate

Journal Title: Archives of Agronomy and Soil Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.