LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the convergence of carathéodory numerical scheme for Mckean-Vlasov equations

Photo by lensingmyworld from unsplash

Abstract We study the strong convergence of the Carathéodory numerical scheme for a class of nonlinear McKean-Vlasov stochastic differential equations (MVSDE). We prove, under Lipschitz assumptions, the convergence of the… Click to show full abstract

Abstract We study the strong convergence of the Carathéodory numerical scheme for a class of nonlinear McKean-Vlasov stochastic differential equations (MVSDE). We prove, under Lipschitz assumptions, the convergence of the approximate solutions to the unique solution of the MVSDE. Moreover, we show that the result remains valid, under continuous coefficients, provided that pathwise uniqueness holds. The proof is based on weak convergence techniques and the Skorokhod embedding theorem. In particular, this general result allows us to construct the unique strong solution of a MVSDE by using the Carathéodory numerical scheme. Examples under which pathwise uniqueness holds are given.

Keywords: carath odory; numerical scheme; odory numerical; mckean vlasov; convergence carath

Journal Title: Stochastic Analysis and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.