LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Energetic Perchlorate Amine Salt: Synthesis, Properties, and Density Functional Theory Calculation

Photo from academic.microsoft.com

ABSTRACT A novel explosive, ethylenediamine triethylenediamine tetraperchlorate (ETT), was synthesized by a rapid “ one-pot” method. The molecular and crystal structures of ETT were determined by X-ray diffraction (XRD) and… Click to show full abstract

ABSTRACT A novel explosive, ethylenediamine triethylenediamine tetraperchlorate (ETT), was synthesized by a rapid “ one-pot” method. The molecular and crystal structures of ETT were determined by X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The purity of the ETT was characterized by hydrogen nuclear magnetic resonance (H-NMR) spectra and elemental analysis (EA). The chemical and physical properties of the co-crystal ETT were further explored including impact sensitivity, velocity of detonation, and thermal behavior. The impact sensitivity of the ETT (h50% = 9.50 cm) is much lower than that of its components, ethylenediamine diperchlorate (ED) (h50% = 5.60 cm) and triethylenediamine diperchlorate (TD) (h50% = 2.10 cm). The measured detonation velocity is 8956 m/s (ρ = 1.873 g/cm3), which is much higher than that of TNT (6900 m/s) or RDX (8350 m/s). The co-crystal ETT shows a unique thermal behavior with a decomposition peak temperature at 365 °C. Band structure and density of states (DOS) of the ETT were confirmed by the CASTEP code. The first-principles tight-binding method within the general gradient approximation (GGA) was employed to study the electronic band structure as well as the DOS and Fermi energy. Hirshfeld surfaces were applied to analyze the intermolecular interactions in the co-crystal, and the results showed that weak interaction was dominantly mediated by H … O hydrogen bond. By analyzing the bond length at different temperatures, N-H covalent bond is the trigger bond for the ETT.

Keywords: salt synthesis; perchlorate amine; bond; novel energetic; amine salt; energetic perchlorate

Journal Title: Journal of Energetic Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.