LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering.

Photo from wikipedia

To date, many metabolic engineering tools and strategies have been developed, including tools for cofactor engineering, which is a common strategy for bioproduct synthesis. Cofactor engineering is used for the… Click to show full abstract

To date, many metabolic engineering tools and strategies have been developed, including tools for cofactor engineering, which is a common strategy for bioproduct synthesis. Cofactor engineering is used for the regulation of pyridine nucleotides, including NADH/NAD+ and NADPH/NADP+, and adenosine triphosphate/adenosine diphosphate (ATP/ADP), which is crucial for maintaining redox and energy balance. However, the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP cannot be monitored in real time using traditional methods. Recently, many biosensors for detecting, monitoring, and regulating the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP have been developed. Although cofactor biosensors have been mainly developed for use in mammalian cells, the potential application of cofactor biosensors in metabolic engineering in bacterial and yeast cells has received recent attention. Coupling cofactor biosensors with genetic circuits is a promising strategy in metabolic engineering for optimizing the production of biochemicals. In this review, we focus on the development of biosensors for NADH/NAD+, NADPH/NADP+, and ATP/ADP and the potential application of these biosensors in metabolic engineering. We also provide critical perspectives, identify current research challenges, and provide guidance for future research in this promising field.

Keywords: metabolic engineering; nadh nad; nad nadph; cofactor; nadph nadp; engineering

Journal Title: Critical reviews in biotechnology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.