The development of technologies to ferment carbohydrates (mainly glucose and xylose) obtained from the hydrolysis of lignocellulosic biomass for the production of second-generation ethanol (2G ethanol) has many economic and… Click to show full abstract
The development of technologies to ferment carbohydrates (mainly glucose and xylose) obtained from the hydrolysis of lignocellulosic biomass for the production of second-generation ethanol (2G ethanol) has many economic and environmental advantages. The pretreatment step of this biomass is industrially performed mainly by steam explosion with diluted sulfuric acid and generates hydrolysates that contain inhibitory compounds for the metabolism of microorganisms, harming the next step of ethanol production. The main inhibitors are: organic acids, furan, and phenolics. Several strategies can be applied to decrease the action of these compounds in microorganisms, such as cell immobilization. Based on data published in the literature, this overview will address the relevant aspects of cell immobilization for the production of 2G ethanol, aiming to evaluate this method as a strategy for protecting microorganisms against inhibitors in different modes of operation for fermentation. This is the first overview to date that shows the relation between inhibitors, cells immobilization, and fermentation operation modes for 2G ethanol. In this sense, the state of the art regarding the main inhibitors in 2G ethanol and the most applied techniques for cell immobilization, besides batch, repeated batch and continuous fermentation using immobilized cells, in addition to co-culture immobilization and co-immobilization of enzymes, are presented in this work.
               
Click one of the above tabs to view related content.