LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dissecting physical structure of calreticulin, an intrinsically disordered Ca2+-buffering chaperone from endoplasmic reticulum

Photo by mybbor from unsplash

Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although… Click to show full abstract

Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.

Keywords: physical structure; dissecting physical; calreticulin; endoplasmic reticulum

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.