LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring potentially alternative non-canonical DNA duplex structures through simulation

Photo from wikipedia

Abstract Hopkins proposed an alternative and chirally distinct family of double-stranded DNA (dsDNA) models that have antiparallel chains with 5′→3′ senses opposite to those of the right-handed Watson–Crick (WC) family.… Click to show full abstract

Abstract Hopkins proposed an alternative and chirally distinct family of double-stranded DNA (dsDNA) models that have antiparallel chains with 5′→3′ senses opposite to those of the right-handed Watson–Crick (WC) family. Termed configuration II, this family of dsDNA models contains both right-handed (II-R) and left-handed (II-L) forms, with Z-DNA as an example of the latter. Relative interstrand binding energies for six DNA duplex models, two each of configuration I-R (standard WC canonical B-DNA), II-R, and II-L for the duplex d(CGCGAATTCGCG), have been estimated under identical conditions using MM-PBSA analysis from molecular dynamics trajectories using three different AMBER force fields. These simulations support the stereo chemical soundness of configuration II dsDNA forms. Recent force fields (Barcelona Supercomputing Center [BSC] [bsc1] and Olomouc 2015 [OL15]) successfully render stable II-L structures, whereas the previous force field, bsc0, generated stable II-R structures, although with an energy difference between II-R and II-L of ∼30 kcal/mol. Communicated by Ramaswamy H. Sarma

Keywords: potentially alternative; dna; alternative non; exploring potentially; canonical dna; dna duplex

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.