LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conformational change of a G-quadruplex under molecular crowding conditions

Photo from wikipedia

Abstract This study examined the influence of the molecular crowding condition induced by polyethylene glycol (PEG) on the G-quadruplex structure of the thrombin-binding aptamer sequence, 5′-GGGTTGGGTGTGGGTTGGG (G3), in a solution… Click to show full abstract

Abstract This study examined the influence of the molecular crowding condition induced by polyethylene glycol (PEG) on the G-quadruplex structure of the thrombin-binding aptamer sequence, 5′-GGGTTGGGTGTGGGTTGGG (G3), in a solution containing a sufficient concentration of mono cations (K+ and Na+). Although the G3 sequence preferably formed the antiparallel type G-quadruplex structure in a Na+ solution, conversion to the parallel type occurred when PEG was added. The antiparallel type was maintained at low PEG concentrations. When the PEG concentration reached 30%, the antiparallel type and parallel type coexist. At PEG concentrations above 40%, the G-quadruplex structure adopted the parallel type completely. In the presence of K+ ions, G3 showed a parallel conformation and remained as a parallel conformation with increasing PEG concentration. The dissociation temperature increased with increasing PEG concentration in all cases, suggesting that the G-quadruplex conformation is more stable under molecular crowding conditions. Communicated by Ramaswamy H. Sarma

Keywords: crowding conditions; molecular crowding; structure; type; concentration; peg

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.