LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epigenetic-based cancer therapeutics: new potential HDAC8 inhibitors

Photo by nci from unsplash

Abstract Designing dual small molecule inhibitors against enzymes associated with cancer has turned into a new strategy in cancer chemotherapy. Targeting DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzymes, involved… Click to show full abstract

Abstract Designing dual small molecule inhibitors against enzymes associated with cancer has turned into a new strategy in cancer chemotherapy. Targeting DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzymes, involved in epigenetic modifications, are considered as promising treatments for a wide range of cancers, due to their association with the initiation, proliferation, and survival of cancer cells. In this study, for the first time, the dual inhibitors of the histone deacetylases 8 (HDAC8) and DNA methyltransferase 1 (DNMT1) has introduced as novel potential candidates for epigenetic-based cancer therapeutics. This research has been facilitated by employing pharmacophore-based virtual screening of ZINC and Maybridge databases, as well as performing molecular docking, molecular dynamics simulations and free binding energy calculation on the top derived compound. Results have demonstrated that the suggested compounds not only adopt highly favorable conformations but also possess strong binding interaction with the HDAC8 enzyme. Additionally, the obtained results from the experimental assay confirmed the predicted behavior of inhibitors from virtual screening. These results can be used for further optimization to yield promising more effective candidates for the treatment of cancer. Communicated by Ramaswamy H. Sarma

Keywords: cancer; therapeutics new; cancer therapeutics; hdac8; based cancer; epigenetic based

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.