LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel

Photo by nci from unsplash

Abstract Studies have shown that in cancer cells, there is an increased T-type calcium channel (TTCC) expression compared to healthy cells. Therefore, the studies targeting TTCC for cancer therapy have… Click to show full abstract

Abstract Studies have shown that in cancer cells, there is an increased T-type calcium channel (TTCC) expression compared to healthy cells. Therefore, the studies targeting TTCC for cancer therapy have shown many positive outcomes. Here, we have used TTA-A2- a potent TTCC inhibitor as a test drug, and paclitaxel (PTX)- a tubule-binding anti-cancer agent as a positive control. Blocking TTCC has shown to overcome resistance in cancer cells towards anti-cancer drugs by reducing calcium influx, and some studies have shown that PTX treatment also reduces the intracellular calcium signaling in cells. So, there is a possibility that PTX might be interacting with calcium channels. Since, drug-drug interaction can cause severe side-effects, or alter the actions of each other; we aim to study the interactions among TTA-A2, PTX, and TTCC. In this study, we have used computational analysis to test the binding of TTA-A2 and PTX with TTCC. To confirm the in-silico result, we further tested these drugs in a 3D spheroid model of A549, a lung adenocarcinoma cell line. The in-silico result showed that both the drugs, TTA-A2 and PTX, could interact at the same site of TTCC to form a higher stable complex as compared to the TTCC-native. The in vitro result showed the antagonistic interaction between the drugs when they are used at the same time. By using the sequential treatment, the spheroids were sensitized by TTA-A2, before treating with PTX. The result indicated that sequential treatment could help to overcome the antagonistic interaction between the two drugs. Communicated by Ramaswamy H. Sarma

Keywords: cancer; ttcc; calcium; antagonistic interaction; anti cancer

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.