LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel quinazolin–sulfonamid derivatives: synthesis, characterization, biological evaluation, and molecular docking studies

Abstract In the design of novel drugs, the formation of hybrid molecules via the combination of several pharmacophores can give rise to compounds with interesting biochemical profiles. A series of… Click to show full abstract

Abstract In the design of novel drugs, the formation of hybrid molecules via the combination of several pharmacophores can give rise to compounds with interesting biochemical profiles. A series of novel quinazolin–sulfonamid derivatives (9a–m) were synthesized, characterized and evaluated for their in vitro antidiabetic, anticholinergics, and antiepileptic activity. These synthesized novel quinazolin–sulfonamid derivatives (9a–m) were found to be effective inhibitor molecules for the α-glycosidase, human carbonic anhydrase I and II (hCA I and hCA II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzyme, with Ki values in the range of 100.62 ± 13.68–327.94 ± 58.21 nM for α-glycosidase, 1.03 ± 0.11–14.87 ± 2.63 nM for hCA I, 1.83 ± 0.24–15.86 ± 2.57 nM for hCA II, 30.12 ± 3.81–102.16 ± 13.87 nM for BChE, and 26.16 ± 3.63–88.52 ± 20.11 nM for AChE, respectively. In the last step, molecular docking calculations were made to compare biological activities of molecules against enzymes which are achethylcholinesterase, butyrylcholinesterase and α-glycosidase. Communicated by Ramaswamy H. Sarma

Keywords: molecular docking; derivatives synthesis; sulfonamid derivatives; novel quinazolin; quinazolin sulfonamid

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.