LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating binding of insecticide buprofezin to DNA by experimental and metadynamics simulation studies

Photo by nci from unsplash

Abstract Buprofezin (BUP) is an insecticide which belongs to the thiadiazine structural family and known to damage DNA in mice. Though its toxic effect on human is not known clearly,… Click to show full abstract

Abstract Buprofezin (BUP) is an insecticide which belongs to the thiadiazine structural family and known to damage DNA in mice. Though its toxic effect on human is not known clearly, understanding the mechanism of interaction of BUP with DNA can prove useful when required. Multi-spectroscopic experiments such as UV-Vis, fluorescence, circular dichroism (CD) and 1H NMR coupled with viscosity measurements, urea effect and voltametric studies were performed to ascertain the mode of binding of BUP with calf thymus DNA (CT-DNA). Analysis of UV-Vis and fluorescence spectra indicated the formation of a complex between BUP and CT-DNA. Other experiments such as competitive binding assays with ethidium bromide (EB) and Hoechst 33258, viscosity measurements, effect of urea, CD, voltammetric studies and 1H NMR spectral analysis suggested that BUP intercalates into the base pairs of CT-DNA. All these results revealed that the binding mode of BUP with CT-DNA should be intercalation and the binding constant is in the order of 104 M−1. The ΔHo < 0 and ΔSo < 0 suggested that H-bonding or van der Waals force was the main binding force between BUP and CT-DNA. The proposed mode of binding of BUP with CT-DNA has been visualized using in silico molecular docking and metadynamics simulation studies, which showed that the phenyl ring of BUP binds to CT-DNA via π-π stacking interaction in addition to H-bond formation. Communicated by Ramaswamy H. Sarma

Keywords: bup dna; buprofezin; dna; simulation studies; metadynamics simulation

Journal Title: Journal of Biomolecular Structure and Dynamics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.