Abstract Objectives Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes… Click to show full abstract
Abstract Objectives Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes of AKI are remarkably complex and diverse. Here, we aim to investigate whether pifithrin-α protected against rhabdomyolysis-induced AKI and to determine the involved mechanisms. Methods Intramuscular injection in the right thigh caudal muscle of C57BL/6J mice with 7.5 ml/kg saline (Group A) or of the same volume 50% glycerol was used to induce rhabdomyolysis and subsequent AKI (Group B). Pifithrin-α was injected intraperitoneally 4 h before (Group C) or 4 h after (Group D) the glycerol injection. Serum creatine kinase, blood urea nitrogen, and creatinine were determined, and the renal cortex was histologically analyzed. Renal expression levels of interested mRNAs and proteins were determined and compared, too. Results Intramuscular injection of glycerol induced rhabdomyolysis and subsequent AKI in mice (Groups B–D). Renal function reduction and histologic injury of renal tubular epithelial cells were associated with increased p53 activation, oxidative stress, and inflammation. Notably, compared with pifithrin-α rescue therapy (Group D), pretreatment of pifithrin-α (Group C) protected the mice from severe injury more effectively. Conclusions Our present study suggests that p53 may be a therapeutic target of AKI caused by glycerol, and the inhibition of p53 can block glycerol-mediated AKI by using pharmacological agents instead of genetic inhibitory approaches, which further supports that p53 played a pivotal role in renal tubular injury when challenged with glycerol.
               
Click one of the above tabs to view related content.