LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Colonization and growth of dehalorespiring biofilms on carbonaceous sorptive amendments

Photo by museumsvictoria from unsplash

Abstract Removal of polychlorinated biphenyls (PCBs) from contaminated sediments is a priority due to accumulation in the food chain. Recent success with reduction of PCB bioavailability due to adsorption onto… Click to show full abstract

Abstract Removal of polychlorinated biphenyls (PCBs) from contaminated sediments is a priority due to accumulation in the food chain. Recent success with reduction of PCB bioavailability due to adsorption onto activated carbon led to the recognition of in situ treatment as a remediation approach. In this study, reduced bioavailability and subsequent break-down of PCBs in dehalorespiring biofilms was investigated using Dehalobium chlorocoercia DF1. DF1 formed a patchy biofilm ranging in thickness from 3.9 to 6.7 µm (average 4.6 ± 0.87 µm), while the biofilm coverage varied from 5.5% (sand) to 20.2% (activated carbon), indicating a preference for sorptive materials. Quantification of DF1 biofilm bacteria showed 1.2–15.3 × 109 bacteria per gram of material. After 22 days, coal activated carbon, bone biochar, polyoxymethylene, and sand microcosms had dechlorinated 73%, 93%, 100%, and 83%, respectively. These results show that a biofilm-based inoculum for bioaugmentation of PCBs in sediment can be an efficient approach.

Keywords: colonization growth; growth dehalorespiring; carbonaceous sorptive; biofilms carbonaceous; dehalorespiring biofilms; activated carbon

Journal Title: Biofouling
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.