LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adhesion of Pseudomonas aeruginosa, Achromobacter xylosoxidans, Delftia acidovorans, Stenotrophomonas maltophilia to contact lenses under the influence of an artificial tear solution

Photo by museumsvictoria from unsplash

Abstract Corneal infection is a devastating sight-threatening complication that is associated with contact lens (CL) wear, commonly caused by Pseudomonas aeruginosa. Lately, Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia have… Click to show full abstract

Abstract Corneal infection is a devastating sight-threatening complication that is associated with contact lens (CL) wear, commonly caused by Pseudomonas aeruginosa. Lately, Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia have been associated with corneal infection. This study investigated the adhesion of these emerging pathogens to CLs, under the influence of an artificial tear solution (ATS) containing a variety of components commonly found in human tears. Two different CL materials, etafilcon A and senofilcon A, either soaked in an ATS or phosphate buffered saline, were exposed to the bacteria. Bacterial adhesion was investigated using a radio-labeling technique (total counts) and plate count method (viable counts). The findings from this study revealed that in addition to P. aeruginosa, among the emerging pathogens evaluated, A. xylosoxidans showed an increased propensity for adherence to both CL materials and S. maltophilia showed lower viability. ATS influenced the viable counts more than the total counts on CLs.

Keywords: achromobacter xylosoxidans; pseudomonas aeruginosa; adhesion; delftia acidovorans; xylosoxidans delftia; acidovorans stenotrophomonas

Journal Title: Biofouling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.