Abstract Coaggregation, the specific recognition and adhesion of genetically distinct bacteria, is proposed to contribute to the development of freshwater biofilms. This work aimed to develop a microplate-based system to… Click to show full abstract
Abstract Coaggregation, the specific recognition and adhesion of genetically distinct bacteria, is proposed to contribute to the development of freshwater biofilms. This work aimed to develop a microplate-based system to measure and model the kinetics of freshwater bacterial coaggregation. Blastomonas natatoria 2.1 and Micrococcus luteus 2.13 were evaluated for coaggregation ability using 24-well microplates containing novel dome shaped wells (DSWs) and standard flat-bottom wells. Results were compared to a tube-based visual aggregation assay. The DSWs facilitated the reproducible detection of coaggregation via spectrophotometry and the estimation of coaggregation kinetics using a linked mathematical model. Quantitative analysis using DSWs was more sensitive than the visual tube aggregation assay and subject to substantially less variation than flat-bottom wells. Collectively these results demonstrate the utility of the DSW-based method and improve upon the current toolkit for studying freshwater bacterial coaggregation.
               
Click one of the above tabs to view related content.