LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DFT and MD study of adsorption sensitivity of aluminium phosphide nanotube towards some air pollutant gas molecules

Photo from wikipedia

Abstract To investigate the adsorption behaviour of CS2, CO2, SO2, H2Se and H2S gas molecules on the external surface of (6, 0) single-walled aluminium phosphide nanotube (AlPNT), the density functional… Click to show full abstract

Abstract To investigate the adsorption behaviour of CS2, CO2, SO2, H2Se and H2S gas molecules on the external surface of (6, 0) single-walled aluminium phosphide nanotube (AlPNT), the density functional theory (DFT) calculations at the B3LYP level of theory are performed. The partial densities of states (PDOS) for the SO2 molecule, the S and O atoms of SO2 molecule before and after adsorption on the surface of AlPNT have been plotted. The vibrational frequencies and physical properties such as chemical potential, chemical hardness, dipole moment and chemical electrophilicity of all studied complexes have been systematically investigated. The electron density and the Laplacian of the electron density for bond critical points have been examined by the AIM theory. Also the molecular dynamics (MD) simulations of two complexes with the minimum and maximum negative interaction energies that is: AlPNT/CO2 and AlPNT/SO2 complexes, respectively, have been considered.

Keywords: phosphide nanotube; adsorption; aluminium phosphide; gas molecules

Journal Title: Molecular Simulation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.