LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations

Photo from wikipedia

Abstract Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between… Click to show full abstract

Abstract Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between two active and inactive conformations like other GTPases. The inactive form of Rab is bound to GDP while its active form is bounded with the GTP. Interexchange between active and inactive form is mediated by the GDP/GTP exchange factor (GEF) which catalyses the conversion from GDP-bound to GTP-bound form, thereby activating the Rab. While the GTP hydrolysis of Rabs is regulated by a GTPase-activating protein (GAP) which causes Rab inactivation. Here, we report the structural flexibility of the Rab21-GTP and Rab21-GDP complexes by docking and molecular dynamics (MD) simulations. Structural analysis of exchange mechanisms of the co-factors complexed with Rab21 reveals that Cys29, Thr33, His48, Gln78 and Lys133 are essentially important in the activation of proteins. Furthermore, a significant change in the orientation of the interacting co-factors, with slight variation in the free energy of binding was observed. Complexation of GEF with Rab21-GTP and Rab21-GDP reveal a flipping of the switchable residues. Finally, 50 ns MD simulations confirm that the GTP-bound Rab21 complex is thermodynamically more favoured than the corresponding GDP-bound complex. This study provides a detailed understanding of the structural elements involved in the conformational changes of Rab21.

Keywords: molecular dynamics; gtp; rab21; form; gdp; dynamics simulations

Journal Title: Molecular Simulation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.