Abstract According to experimental studies, Bacillomycin D has strong antimicrobial activities, but the antimicrobial mechanism is still unknown. In this paper, the interaction mechanisms between this cyclic lipopeptide and three… Click to show full abstract
Abstract According to experimental studies, Bacillomycin D has strong antimicrobial activities, but the antimicrobial mechanism is still unknown. In this paper, the interaction mechanisms between this cyclic lipopeptide and three different charged cell membranes are studied via Coarse-Grained Molecular Dynamics (CG MD) simulations. A specific CG model for the cyclic lipopeptide Bacillomycin D was developed. The insertion of cyclic lipopeptide Bacillomycin D into DOPC, DOPC/DPPA and DOPC/DOTAP cell membranes was investigated. The position distribution and stability of Bacillomycin D in the three different cell membranes were analysed and compared based on density profile calculations. Additionally, we focused on the Radial Distribution Function (RDF) curves between amino acid residues with negative charges or strong hydrophobic properties and the head groups of two different cell membranes. Based on changes in the curvature of the three membranes, the cyclic lipopeptide Bacillomycin D can cause localised surface protrusions in DOPC/DOTAP membranes, inward depressions in the surface of DOPC/DPPA membranes and inhibition deformation in the surface of DOPC membranes. This study will help to further understand the antibacterial mechanism of the cyclic lipopeptide Bacillomycin D and provide a basis for the development of new antibiotics.
               
Click one of the above tabs to view related content.