LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Niosomes for oral delivery of nateglinide: in situ–in vivo correlation

Photo from wikipedia

Abstract Niosomes have been claimed to enhance intestinal absorption and to widen the absorption window of acidic drugs. This was reported after monitoring the intestinal absorption in situ. Accordingly, the… Click to show full abstract

Abstract Niosomes have been claimed to enhance intestinal absorption and to widen the absorption window of acidic drugs. This was reported after monitoring the intestinal absorption in situ. Accordingly, the aim of this work was to investigate the effect of niosomal encapsulation on intestinal absorption and oral bioavailability of nateglinide. This was conducted with the goal of correlation between in situ intestinal absorption and in vivo availability. The drug was encapsulated into proniosomes. The niosomes resulting after hydration of proniosomes were characterized with respect to vesicle size and drug entrapment efficiency. The in situ rabbit intestinal absorption of nateglinide was monitored from its aqueous solution and niosomes. Streptozotocin was used to induce diabetes in albino rats which were then used to assess the hypoglycemic effect of nateglinide after oral administration of aqueous dispersion and niosomal systems. The prepared vesicles were in the nanoscale with the recorded size being 283 nm. The entrapment efficiency depended on the pH of the formulation. The in situ intestinal absorption reflected non-significant alteration in the membrane transport parameters of the drug after niosomal encapsulation compared with the free drug solution. In contrast, niosomes showed significant improvement in the rate and extent of the hypoglycemic effect compared with the unprocessed drug. This discrepancy can be attributed to different transport pathway for the drug after niosomal inclusion with the vesicles undergoing translymphatic transport which can minimize presystemic metabolism. However, this requires confirmatory investigations. In conclusion niosomes can enhance oral bioavailability of nateglinide with the absorption being through nontraditional pathway.

Keywords: absorption; oral delivery; intestinal absorption; niosomes oral; correlation; drug

Journal Title: Journal of Liposome Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.