Abstract Glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra has been reported to ameliorate diabetes. Here, the effects of liposome-encapsulated glycyrrhizin on STZ-induced diabetes and associated oxidative stress were investigated. Wistar… Click to show full abstract
Abstract Glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra has been reported to ameliorate diabetes. Here, the effects of liposome-encapsulated glycyrrhizin on STZ-induced diabetes and associated oxidative stress were investigated. Wistar rats were grouped as control (NC, received placebo), diabetic (DC, STZ-induced), diabetic treated with free glycyrrhizin (DTG, 3 i.v. doses, 1.6 mg/0.5 ml), empty liposomes (DTl, 3 i.v. doses), and liposome-encapsulated glycyrrhizin (DTbd, 3 i.v. doses, 1.6 mg/0.5 ml). Serum glucose, insulin, intraperitoneal glucose tolerance test and glycohemoglobin were estimated. Free iron and iron-mediated oxidative stress were examined. Histological examinations of the kidney and liver were performed. Liposomal-glycyrrhizin treatment caused significant improvement of hyperglycemia (DC vs. DTbd p < .05), glucose intolerance (DC vs. DTG p < .01 and DC vs. DTbd p < .05), insulin (DC vs. DTG p < .1, DTbd vs. DC p < .05 and DTbd vs. DTG p < .1) and glycohemoglobin (DC vs. DTG p < .1 and DC vs. DTbd p < .05) levels in the DTbd group. Alleviation of free iron release (DC vs. DTbd p < .05), lipid peroxidation (DC + H2O2 vs. DTbd + H2O2 p < .05), deoxyribose (DC + H2O2 vs. DTbd + H2O2, p < .05), and DNA degradation occurred in the DTbd group. The abnormalities of the kidney and liver were abolished in the DTbd group. The inhibitory effects were more pronounced compared to free glycyrrhizin. Liposome-encapsulated glycyrrhizin treatment caused inhibition of diabetic complications through its antioxidant effects and can be exploited for effective treatment of diabetes.
               
Click one of the above tabs to view related content.