LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CS1: how will they do? How can we help? A decade of research and practice

Photo from wikipedia

ABSTRACT Background and Context: Computer Science attrition rates (in the western world) are very concerning, with a large number of students failing to progress each year. It is well acknowledged… Click to show full abstract

ABSTRACT Background and Context: Computer Science attrition rates (in the western world) are very concerning, with a large number of students failing to progress each year. It is well acknowledged that a significant factor of this attrition, is the students’ difficulty to master the introductory programming module, often referred to as CS1. Objective: The objective of this article is to describe the evolution of a prediction model named PreSS (Predict Student Success) over a 13-year period (2005–2018). Method: This article ties together, the PreSS prediction model; pilot studies; a longitudinal, multi-institutional re-validation and replication study; improvements to the model since its inception; and interventions to reduce attrition rates. Findings: The outcome of this body of work is an end-to-end real-time web-based tool (PreSS#), which can predict student success early in an introductory programming module (CS1), with an accuracy of 71%. This tool is enhanced with interventions that were developed in conjunction with PreSS#, which improved student performance in CS1. Implications: This work contributes significantly to the computer science education (CSEd) community and the ITiCSE 2015 working group’s call (in particular the second grand challenge), by re-validating and developing further the original PreSS model, 13 years after it was developed, on a modern, disparate, multi-institutional data set.

Keywords: help decade; model; press; computer science; cs1 help; cs1

Journal Title: Computer Science Education
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.