LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of resistor-loaded coding metasurface for independent amplitude and phase control

Photo from wikipedia

Due to their subwavelength thickness, light weight and easy fabrication, metasurfaces show obvious advantages over 3D metamaterials. Among this, a new concept so-called digital coding metasurfaces which are described in… Click to show full abstract

Due to their subwavelength thickness, light weight and easy fabrication, metasurfaces show obvious advantages over 3D metamaterials. Among this, a new concept so-called digital coding metasurfaces which are described in a direct manner by quantized reflection or refraction phases was proposed. This paper proposes a scheme to achieve simultaneous and independent control of phase and amplitude responses via a reflective coding metasurface as it would be beneficial for full control of propagation of electromagnetic waves. The deflection of the reflected beam is dominated by designed coding patterns of digital unit cells while the amplitude adjustment depends on tuning values of loaded resistances on the unit cells. The simulation and experimental results confirm the function of the metasurface proposed above. The independent control of both phase and amplitude profiles of EM waves implies the potential application in beam shaping and high-quality holography.

Keywords: phase; control; resistor loaded; design resistor; coding metasurface

Journal Title: Journal of Electromagnetic Waves and Applications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.