LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphological diversity of AlN nano- and microstructures: synthesis, growth orientations and theoretical modelling

Photo by brittaniburns from unsplash

ABSTRACT Recent developments have seen breakthroughs in zero-, one-, two-, and three-dimensional AlN micro- and nanostructures, such as nanoparticles, nanowires, nanotubes, thin films and 3D multifold symmetry crystals. The attractive… Click to show full abstract

ABSTRACT Recent developments have seen breakthroughs in zero-, one-, two-, and three-dimensional AlN micro- and nanostructures, such as nanoparticles, nanowires, nanotubes, thin films and 3D multifold symmetry crystals. The attractive electrical, optical, and thermal properties of AlN make these materials irreplaceable for microelectrochemical systems (MEMS), surface acoustic waves (SAWs) and light emitting diodes (LED). The significant interest in the field of AlN nanostructure synthesis and application encouraged us to summarise the reported data to better understand the physical and chemical aspects of AlN crystal growth processes. Four main topics are covered in this review article: (1) the morphological diversity of AlN nano- and microstructures; (2) formation mechanisms and growth dynamics; (3) theoretical simulation of growth processes based on density functional theory (DFT) and phase field (PF) modelling approaches; (4) application and devices. This article also provides a perspective on future research relevant to AlN micro- and nanostructures.

Keywords: diversity aln; nano microstructures; morphological diversity; aln; aln nano; growth

Journal Title: International Materials Reviews
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.