LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Innate immune TLR7 signaling mediates platelet activation and platelet-leukocyte aggregate formation in murine bacterial sepsis

Photo from wikipedia

Abstract Thrombocytopenia is a common complication in sepsis and is associated with higher mortality. Activated platelets express CD62P, which facilitates platelet-leukocyte aggregate (PLA) formation and contributes to thrombocytopenia in sepsis.… Click to show full abstract

Abstract Thrombocytopenia is a common complication in sepsis and is associated with higher mortality. Activated platelets express CD62P, which facilitates platelet-leukocyte aggregate (PLA) formation and contributes to thrombocytopenia in sepsis. We have reported that thrombocytopenia in murine sepsis is partly attributable to TLR7 signaling, but the underlying mechanism is unclear. In the current study, we tested the hypothesis that TLR7 mediates platelet activation and PLA formation during sepsis. In vitro, whole blood from WT mice treated with loxoribine, a TLR7 agonist, exhibited a dose-dependent increase in activated platelets compared to the control (PBS with 0.05% DMSO) or loxoribine-treated TLR7−/− whole blood. In a murine model of sepsis, there was a significant increase in platelet activation and PLA formation 24 hours after cecal ligation and puncture (CLP) as evidenced by double positive expression of CD41+/CD62P+ and CD45+/CD62P+, respectively. The sepsis-induced PLA formation was significantly attenuated in TLR7−/− mice. Finally, in ex-vivo experiments, plasma isolated from septic mice induced WT platelet activation, but such effect was significantly attenuated in platelets deficient of TLR7. These findings demonstrate a pivotal role of TLR7 signaling in platelet activation and PLA formation during bacterial sepsis.

Keywords: sepsis; tlr7; platelet activation; pla formation; formation

Journal Title: Platelets
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.