LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-stream part-fused graph convolutional networks for skeleton-based gait recognition

Photo from wikipedia

Gait recognition, a task of identifying people through their walking pattern, has attracted more and more researchers' attention. At present, most skeleton-based gait recognition approaches extract gait features from merely… Click to show full abstract

Gait recognition, a task of identifying people through their walking pattern, has attracted more and more researchers' attention. At present, most skeleton-based gait recognition approaches extract gait features from merely joint coordinates. However, the information, e.g. bone and motion, is equally instructive and discriminative for gait recognition. Thus, this paper proposes a novel multi-stream part-fused graph convolutional network, MS-Gait, to fuse part-level information and capture multi-order features from skeleton data. To be specific, we integrate a channel attention learning mechanism into the graph convolutional networks (GCN) to improve the representational power. In addition, part-level information is merged by capturing features from the skeleton graph and its subgraphs concurrently. Finally, a multi-stream strategy is proposed to model joint, bone, and motion dynamics simultaneously, which is proven to effectively improve the recognition accuracy. On the popular CASIA-B dataset, extensive experiments demonstrate that our method can achieve state-of-the-art performance and is robust to confounding variations.

Keywords: recognition; graph convolutional; gait recognition; multi stream; gait; part

Journal Title: Connection Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.