Abstract Purpose: To study the different effects of single- and hybrid-frequency magnetic fields on long-term potentiation (LTP) in synaptic plasticity. Materials and methods: Based on the online electromagnetic field stimulation… Click to show full abstract
Abstract Purpose: To study the different effects of single- and hybrid-frequency magnetic fields on long-term potentiation (LTP) in synaptic plasticity. Materials and methods: Based on the online electromagnetic field stimulation system and field excitatory postsynaptic potentials (fEPSPs) recording system, we applied four different single- and hybrid-frequency magnetic fields with an intensity of 1 mT to the Schaffer collateral (CA1) pathway of rat hippocampal slices in vitro. Results: The amplitude of fEPSPs decreased significantly under both single- and hybrid-frequency magnetic stimulation. Lower single-frequency magnetic stimulation on LTP had a greater regulating effect, while the regulating effect among four different hybrid-frequency extremely low-frequency electromagnetic fields (ELF-EMFs) stimulations on LTP showed no significant differences. Conclusion: Single-frequency magnetic stimulation produces more significant regulatory effects, and the lower the frequency, the more significant the regulatory effect. The effect of hybrid-frequency magnetic stimulation in each group was similar, and there was no significant difference between each group. The 15-Hz single-frequency magnetic stimulation group showed the most significant regulatory effect, but once it was mixed with other higher frequency magnetic stimulation, its regulation effect was significantly weakened.
               
Click one of the above tabs to view related content.