LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of genomic instability in populations of Drosophila melanogaster from regions of Ukraine with different impact of radiation factors

Photo by portablepeopleproductions from unsplash

Abstract Purpose To investigate differences in the gonadal dysgenesis frequency as one of the indicators of genome instability through natural populations of Drosophіla melanogaster, selected from Ukrainian regions with different… Click to show full abstract

Abstract Purpose To investigate differences in the gonadal dysgenesis frequency as one of the indicators of genome instability through natural populations of Drosophіla melanogaster, selected from Ukrainian regions with different radiation impacts. Follow-up study of the dynamics of this indicator under chronic exposure in laboratory conditions for 10 generations. Materials and methods The study was conducted in two stages. The first one included trapping of insects in regions with different radiation loads with subsequent assessment of both the time of maturation and the index of the gonadal dysgenesis through the first (F1) generation, obtained in laboratory conditions. At the second stage, the dynamics of this indicator were investigated for the F1-descendants of each ten consequent generations, which were developed under laboratory conditions both with and without additional gamma-exposure with different characteristics of the dose rate 1.2 × 10−8, 0.3 × 10−8 and 0.12 × 10−8 Gy/sec. Results Differences in the gonadal dysgenesis frequency as one of the indicators of genome instability were revealed in F1-descendants of natural populations of Drosophіla melanogaster, selected from regions of different radiation impact. Under conditions of additional low rate chronic irradiation in laboratory conditions for 10 generations, significant differences in changes in the level and dynamics of this indicator were established depending on the accumulated dose of Drosophila populations from the city of Netishyn (Khmelnytskyi NPP) and Magarach city. There were no signs of adaptation. Conclusions The discrepancy between the real and expected biological effects has reflected the difference in the intensity of the radiation background, which was traditionally determined by the gamma-emitters and did not take into account the wide range of other genotoxic elements from nuclear power emissions. A complex, non-monotonic type of frequency dynamics of gonadal dysgenesis could be determined by the interaction of radiation damage, protection and recovery.

Keywords: instability; impact; gonadal dysgenesis; radiation; laboratory conditions

Journal Title: International Journal of Radiation Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.