LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A complex solution to (3+1)-dimensional KdV and (3+1)-dimensional KdV-Burger equations in bubbly liquid

Photo from wikipedia

Abstract In this paper, we use secant hyperbolic ansatz with tanh-coth method, combined with Riccati equation to derive complex travelling wave solutions to the (3+1)-dimensional Korteweg-de-Vries (KdV) and (3+1)-dimensional KdV-Burgers… Click to show full abstract

Abstract In this paper, we use secant hyperbolic ansatz with tanh-coth method, combined with Riccati equation to derive complex travelling wave solutions to the (3+1)-dimensional Korteweg-de-Vries (KdV) and (3+1)-dimensional KdV-Burgers equations. Both the complex solitary and periodic solutions for (3+1)-dimensional KdV equation were obtained. For the (3+1)-dimensional KdVB equation, the real part is the sum of the shock wave solution of a (3+1) dimensional Burgers equation and the solitary wave solution of a (3+1)-dimensional KdV equation, while the imaginary part is the product of a shock wave solution of (3+1)-dimensional Burgers equation with a solitary wave solutions of (3+1)-dimensional KdV equation.

Keywords: equation; solution dimensional; dimensional kdv; kdv dimensional; kdv

Journal Title: Journal of Interdisciplinary Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.