LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment

Photo from wikipedia

Abstract This study addresses landslide susceptibility mapping (LSM) using a novel ensemble approach of using a bivariate statistical method (weights of evidence [WoE] and evidential belief function [EBF])-based logistic model… Click to show full abstract

Abstract This study addresses landslide susceptibility mapping (LSM) using a novel ensemble approach of using a bivariate statistical method (weights of evidence [WoE] and evidential belief function [EBF])-based logistic model tree (LMT) classifier. The performance and prediction capability of the ensemble models were assessed using the area under the ROC curve (AUROC), standard error, 95% confidence intervals and significance level P. Model performance analyses indicated that the AUROC values of the WoE–LMT ensemble model using the training and validation data-sets were 86.02 and 85.9%, respectively, whereas those of the EBF–LMT ensemble model were 88.2 and 87.8%, respectively. On the other hand, the AUC curves for the four landslide susceptibility maps indicated that the AUC values of the ensemble models of WoE–LMT (85.11 and 83.98%) and EBF–LMT (86.21 and 85.23%) could improve the performance and prediction accuracy of single WoE (84.23 and 82.46%) and EBF (85.39 and 81.33%) models for the training and validation data-sets.

Keywords: bivariate statistical; ensemble approach; model; landslide susceptibility; novel ensemble

Journal Title: Geocarto International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.