LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolites from the plant endophytic fungus Penicillium sp. CPCC 401423 and their cytotoxic activity against MIA PaCa-2 cells.

Photo by theforestbirds from unsplash

Twenty-two metabolites were isolated from Penicillium sp. CPCC 401423 cultured on rice. The structures of all compounds were elucidated mainly by MS and NMR analysis as well as the necessary… Click to show full abstract

Twenty-two metabolites were isolated from Penicillium sp. CPCC 401423 cultured on rice. The structures of all compounds were elucidated mainly by MS and NMR analysis as well as the necessary CD experimental evidence, of which penicillidione A (1), penicillidione B (2), (E)-4-[(4-acetoxy-3-methyl-2-butenyl)oxy]phenylacetic acid (3), (S)-2-hydroxy-2-{4-[(3-methyl-2-butenyl)oxy]phenyl} (4), (S)-4-(2,3-dihydroxy-3-methyl-butoxy)phenylacetic acid (5), (E)-4-[(3-carboxy-2-butenyl)oxy]benzoic acid (6), (Z)-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]benzoic acid (7), open-cycled N-demethylmelearoride A (12), and penostatin M (16) were identified as new compounds. The cytotoxic activity against human pancreatic carcinoma cell line MIA PaCa-2a was detected. Among them, compounds 13-15 and 22 displayed significant cytotoxicity against MIA-PaCa-2 cells with IC50 values of 8.9, 36.5, 31.8, and 22.3 µM, respectively (positive control gemcitabine IC50 65.0 µM).

Keywords: butenyl oxy; cpcc 401423; penicillium cpcc; mia; mia paca

Journal Title: Journal of Asian natural products research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.