LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel determination of energy expenditure efficiency during a balance task using accelerometers. A pilot study

Photo from wikipedia

ABSTRACT The objectives of this study are to determine the displacement of the center of pressure (CoP) and its association with the spectral energy density of the acceleration required for… Click to show full abstract

ABSTRACT The objectives of this study are to determine the displacement of the center of pressure (CoP) and its association with the spectral energy density of the acceleration required for the maintenance of postural balance in different standing positions in healthy participants using design observational and setting laboratorial studies. Participants were 30 healthy university students aged between 18 and 32 years old (mean [M] ± standard deviation [SD] = 21,57 ± 3,31 years). Triaxial accelerometer and a pressure platform were used in order to obtain energy spectral density and CoP sway measurements during four balance tasks. Statistically significant differences were found for anteroposterior (p = 0.002) and mediolateral (p = 0.009) CoP displacement between the conditions eyes closed and stable surface and the conditions eyes closed and unstable surface. A statistically significant correlation was also observed between Z-axis (anterior-posterior) of the accelerometer and mediolateral axis of the CoP (r = 0.465; p = 0.01) and between Y-axis accelerometer (mediolateral) and displacement of the CoP in the anteroposterior axis (r = 0.413; p = 0.023). Spectral energy density appears to be associated with the displacement of CoP in healthy participants.

Keywords: novel determination; energy expenditure; determination energy; energy; cop; balance

Journal Title: Assistive Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.