ABSTRACT The present work investigates the tribological behavior of electroless Ni-B coating in its as-plated condition at elevated operating temperatures. Ni-B coating is deposited using an electroless method on AISI… Click to show full abstract
ABSTRACT The present work investigates the tribological behavior of electroless Ni-B coating in its as-plated condition at elevated operating temperatures. Ni-B coating is deposited using an electroless method on AISI 1040 steel specimens. Coating characterization is done using scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction techniques. Vicker's microhardness and surface roughness are measured. Friction and wear tests are carried out on a pin-on-disc tribological test setup at room and elevated temperatures of 100, 300, and 500°C. The tribological behavior deteriorates at 100°C compared to room temperature. Electroless Ni-B coating shows excellent wear resistance at 300°C, which again degrades at 500°C due to severe oxidation and softening of the deposits. The worn surface of the coatings is analyzed using optical microscopy and scanning electron microscopy. Within the temperature range considered, the wear mechanism changes from adhesion to a combination of adhesion and abrasion as the temperature rises from ambient condition to 100°C, following which the wear mechanism is predominantly abrasive. The formation of a tribochemical oxide film also affects the tribological behavior of the coatings at high temperature.
               
Click one of the above tabs to view related content.