LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerated Testing to Investigate Corrosion Mechanisms of Carburized and Carbonitrided Martensitic Stainless Steel for Aerospace Bearings in Harsh Environments

Photo from wikipedia

Abstract Carburizable martensitic stainless steels (MSSs) are attractive candidates for bearings due to their high corrosion resistance, high hardness, and high temperature performance. Wear performance in tribocorrosion applications is strongly… Click to show full abstract

Abstract Carburizable martensitic stainless steels (MSSs) are attractive candidates for bearings due to their high corrosion resistance, high hardness, and high temperature performance. Wear performance in tribocorrosion applications is strongly influenced by the surrounding environment. Electrochemical testing was used to evaluate three different surface treatments on AMS 5930 steel developed for advanced gas turbine engine bearing applications: low temperature (LTT), high temperature (HTT), and carbonitrided (CN). HTT had a higher corrosion rate that increased with time, whereas LTT and CN had lower corrosion rates that were stable over time. Accelerated testing revealed that surface treatment significantly influenced how corrosion propagated: HTT was more uniform; conversely, LTT and CN showed localized attack. Degradation mechanisms developed from electrochemical methods provide rapid insight into long-term wear behavior.

Keywords: testing investigate; corrosion; accelerated testing; steel; martensitic stainless

Journal Title: Tribology Transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.