LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Roughness Influence on Tribological Behavior of HiPIMS DLC Coatings

Photo from wikipedia

Abstract The application of diamond-like carbon (DLC) coatings in dry machining of difficult-to-machine materials has been gaining popularity due to high inertness, low coefficient of friction (COF), and high hardness… Click to show full abstract

Abstract The application of diamond-like carbon (DLC) coatings in dry machining of difficult-to-machine materials has been gaining popularity due to high inertness, low coefficient of friction (COF), and high hardness of these coatings. Although the effect of surface roughness on the tribological properties of DLC coatings is of paramount importance, usually it is overlooked and coatings performance analysis was accomplished generally on highly polished substrates. The generation of polished surfaces is a time-consuming, labor-intensive process and, in most cases, not feasible for the industry due to its high cost. This article focuses on determining the effect of substrate (cemented carbide, WC-Co) surface roughness on the load-bearing capacity and tribological properties of DLC coatings deposited by High Power Impulse Magnetron Sputtering (HiPIMS) in Ne–Ar gas plasma. The DLC films were deposited onto WC-Co substrates with three different surface roughness profiles and their tribological performance were evaluated using a reciprocating tribotest. The high surface roughness resulted in increased wear rate due to high levels of asperities and increased potential for premature delamination of the coatings, while also causing severe damage to the counterbody due to inhibition of transfer film formation.

Keywords: dlc coatings; surface roughness; due high; roughness influence

Journal Title: Tribology Transactions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.