Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy… Click to show full abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
               
Click one of the above tabs to view related content.