4D printing is a result of 3D printing of smart materials which respond to diverse stimuli to produce novel products. 4D printing has been applied successfully to many fields, e.g.,… Click to show full abstract
4D printing is a result of 3D printing of smart materials which respond to diverse stimuli to produce novel products. 4D printing has been applied successfully to many fields, e.g., engineering, medical devices, computer components, food processing, etc. The last two years have seen a significant increase in studies on 4D as well as 5D and 6D food printing. This paper reviews and summarizes current applications, benefits, limitations, and challenges of 4D food printing. In addition, the principles, current, and potential applications of the latest additive manufacturing technologies (5D and 6D printing) are reviewed and discussed. Presently, 4D food printing applications have mainly focused on achieving desirable color, shape, flavor, and nutritional properties of 3D printed materials. Moreover, it is noted that 5D and 6D printing can in principle print very complex structures with improved strength and less material than do 3D and 4D printing. In future, these new technologies are expected to result in significant innovations in all fields, including the production of high quality food products which cannot be produced with current processing technologies. The objective of this review is to identify industrial potential of 4D printing and for further innovation utilizing 5D and 6D printing.
               
Click one of the above tabs to view related content.