Currently, the use of synthetic pigments in foods is restricted since synthetic pigments are proven and suspected to be harmful to human health. Phycobiliproteins (PBPs), existed in phycobilisomes (PBSs) of… Click to show full abstract
Currently, the use of synthetic pigments in foods is restricted since synthetic pigments are proven and suspected to be harmful to human health. Phycobiliproteins (PBPs), existed in phycobilisomes (PBSs) of algae, are a kind of pigment-proteins with intense color. The specific color of PBPs (red and blue) is given by the water-soluble open-chained tetrapyrrole chromophore (phycobilin) that covalently attaches to the apo-protein via thioether linkages to cysteine residues. According to the spectral characteristics of PBPs, they can be categorized as phycoerythrins (PEs), phycocyanins (PCs), allophycocyanins (APCs), and phycoerythrocyanins (PECs). PBPs can be used as natural food colorants, fluorescent substances, and bioactive ingredients in food applications owing to their color characteristics and physiological activities. This paper mainly summarizes the extraction and purification methods of the PBPs and reviews their characteristics and applications. Moreover, the use of several strategies such as additives, microencapsulation, electrospray, and cross-linking to improve the stability and bioavailability of PBPs as well as the future outlooks of PBPs as natural colorants in food commercialization are elucidated.
               
Click one of the above tabs to view related content.