LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface alloying of miniature components by micro-electrical discharge process

Photo from wikipedia

ABSTRACT Surface alloying is necessary to enhance the surface features of machine elements. In the present study, feasibility of micro-electric discharge machining (micro-EDM) process for surface alloying has been investigated.… Click to show full abstract

ABSTRACT Surface alloying is necessary to enhance the surface features of machine elements. In the present study, feasibility of micro-electric discharge machining (micro-EDM) process for surface alloying has been investigated. Experiments are conducted on Nickel sheets using tool of Ti6Al4V with EDM oil and kerosene as dielectric. The surface modification takes place by spark discharges on localized regions of the work piece and the tool surface causing melting of tool and work piece, disassociation of dielectric, alloying, and quenching in the electrolyte. The samples were analyzed by field emission scanning electron microscope equipped with energy-dispersive X-ray spectroscopy, microhardness testing machine, and X-ray diffraction. Recast layers obtained have distinct structure and composition as compared to the work piece. Average recast layer thickness varied from 10.72 to 69.8 µm in case of EDM oil and from 13.5 to 31.6 µm in case of kerosene by varying voltage, pulse duration (on time) and frequency during the experiment. The microhardness of the machined surfaces was obtained in a wide range of 161.61–338.25 HV whereas the microhardness of unaffected base metal was 132.25 HV. Titanium carbide (TiC) was deposited and consequently there was improvement in the hardness of the work piece.

Keywords: work piece; surface; discharge; process surface; surface alloying

Journal Title: Materials and Manufacturing Processes
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.