ABSTRACT Surface composites were fabricated on AA6063-T6 base metal using silicon carbide (SiC) reinforcement particles by friction stir processing (FSP). Influence of multiple FSP passes was investigated on the SiC… Click to show full abstract
ABSTRACT Surface composites were fabricated on AA6063-T6 base metal using silicon carbide (SiC) reinforcement particles by friction stir processing (FSP). Influence of multiple FSP passes was investigated on the SiC particle distribution, processed zone dimensions, and microhardness of fabricated composites. The rotational speed, traverse speed, and tool tilt were kept constant and the numbers of passes were varied at 2, 4, 6, and 8. The particle distribution in processed zone was analyzed using OM and SEM, while microhardness were evaluated by Vickers indentation test. The results reveal that with increase in FSP passes there is increase in processed zone dimensions and elimination of defects such as agglomeration of particles and void. The microhardness of reinforced region was increased uniformly with increasing passes which is attributed to homogeneous distribution of reinforcement particles. The peak microhardness value of 81.9 Hv was obtained in sample which is processed with eight numbers of FSP passes. Processed zone indicates good bonding with the substrate and grain refinement.
               
Click one of the above tabs to view related content.