ABSTRACT Most of the studies on cutting mechanisms and surface integrity in turning are investigated with a straight tool path (longitudinal/end face turning) while few contributions have been done in… Click to show full abstract
ABSTRACT Most of the studies on cutting mechanisms and surface integrity in turning are investigated with a straight tool path (longitudinal/end face turning) while few contributions have been done in curved surface turning. This work explores the evolutions of cutting force, chip morphology and surface integrity when turning a curved surface, using fillet surface machining of AISI 304 stainless steel. The varying cutting conditions caused by the presented turning are revealed by detailed geometric analysis and employed as indicators for further discussions on cutting force, chip morphology, and machined surface integrity (including surface roughness, microhardness, microstructure, and residual stress). Apart from the difference of cutting force components in tangential, radial, and cutting speed directions along the fillet surface, wider and thinner chips are obtained from end face turning. The measured microhardness, microstructural alternation, and stress condition results comprehensively illustrate a reduction of severe plastic deformation from the outer face to the end face.
               
Click one of the above tabs to view related content.