ABSTRACT This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness… Click to show full abstract
ABSTRACT This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.
               
Click one of the above tabs to view related content.