ABSTRACT To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected… Click to show full abstract
ABSTRACT To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected empirical likelihood (EL) methods in conjunction with dimension-reduced kernel estimation of propensity or/and conditional mean response function. Consistency and asymptotic normality of the maximum dimension-reduced EL estimators are established. We further study the asymptotic properties of the resulting dimension-reduced EL ratio functions and the corresponding EL confidence intervals for the response mean are constructed. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented.
               
Click one of the above tabs to view related content.