LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimators based on unconventional likelihoods with nonignorable missing data and its application to a children's mental health study

Photo by campaign_creators from unsplash

ABSTRACT Nonignorable missing data is common in studies where the outcome is relevant to the subject's behaviour. Ibrahim, Lipsitz, and Horton [(2001), ‘Using Auxiliary Data for Parameter Estimation with Non-ignorably… Click to show full abstract

ABSTRACT Nonignorable missing data is common in studies where the outcome is relevant to the subject's behaviour. Ibrahim, Lipsitz, and Horton [(2001), ‘Using Auxiliary Data for Parameter Estimation with Non-ignorably Missing Outcomes’, Journal of the Royal Statistical Society: Series C (Applied Statistics), 50, 361–373] fitted a logistic regression for a binary outcome subject to nonignorable missing data, and they proposed to replace the outcome in the mechanism model with an auxiliary variable that is completely observed. They had to correctly specify a model for the auxiliary variable; unfortunately the outcome variable subject to nonignorable missingness is still involved. The correct specification of this model is mysterious. Instead, we propose two unconventional likelihood-based estimation procedures where the nonignorable missingness mechanism model could be completely bypassed. We apply our proposed methods to the children's mental health study and compare their performance with existing methods. The large sample properties of the proposed estimators are rigorously justified, and their finite sample behaviours are examined via comprehensive simulation studies.

Keywords: children mental; nonignorable missing; missing data; health study; mental health

Journal Title: Journal of Nonparametric Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.