Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing… Click to show full abstract
Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.
               
Click one of the above tabs to view related content.