LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stochastic proximal quasi-Newton methods for non-convex composite optimization

Photo from wikipedia

ABSTRACT In this paper, we propose a generic algorithmic framework for stochastic proximal quasi-Newton (SPQN) methods to solve non-convex composite optimization problems. Stochastic second-order information is explored to construct proximal… Click to show full abstract

ABSTRACT In this paper, we propose a generic algorithmic framework for stochastic proximal quasi-Newton (SPQN) methods to solve non-convex composite optimization problems. Stochastic second-order information is explored to construct proximal subproblem. Under mild conditions we show the non-asympotic convergence of the proposed algorithm to stationary point of original problems and analyse its computational complexity. Besides, we extend the proximal form of Polyak-Ɓojasiewicz (PL) inequality to constrained settings and obtain the constrained proximal PL (CP-PL) inequality. Under CP-PL inequality linear convergence rate of the proposed algorithm is achieved. Moreover, we propose a modified self-scaling symmetric rank one incorporated in the framework for SPQN method, which is called stochastic symmetric rank one method. Finally, we report some numerical experiments to reveal the effectiveness of the proposed algorithm.

Keywords: stochastic proximal; proximal quasi; quasi newton; optimization; non convex; convex composite

Journal Title: Optimization Methods and Software
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.